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Preface

This text is intended for use at the senior-graduate level for uni-
versity courses on the analysis and design of dynamic systems and
for independent study by engineers and applied mathematicians.
An elementary knowledge of mechanics and ordinary differential
equations is presumed. Some acquaintance with matrix algebra and
the properties of linear systems is desirable, but the required fa-
miliarity can be obtained by studying the two appendices. The book
grew out of a set of lecture notes for a Harvard University summer
school program on optimization of dynamic systems given in 1963.
These notes were rewritten and extended for graduate courses given
at Harvard from 1963 to 1968 and at M.I.T. in 1966.

The book is concerned with the analysis and design of complicated
dynamic systems. Particular emphasis is placed on determining the
“best” way to guide and/or control such systems. Over the past
twenty-five years, a great body of knowledge has been builtup on the
subject of feedback control systems for linear, time-invariant dynamic
systems. This knowledge plays an important role in our technology,
and almost every engineering school recognizes this fact by teaching
courses in this area. However, many dynamic systems— such as aero-
space systems —are nonlinear and/or time-varying, and the techniques
for analysis and design of linear, time-invariant systems are, in gen-
eral, not applicable to these more complicated systems.

The appearance of practical, high-speed digital computers in the
1950’s provided an essential tool for dealing with nonlinear and time-
varying systems. Engineers were quick to take advantage of these
remarkable computers to do extensive cut-and-try design work on
paper instead of in the development laboratory. In many instances,
particularly when designing guidance and control systems, it became
clear that a more systematic approach was desirable. This led to a
renewed interest in an old subject, the calculus of variations, and to



the discovery of an interesting extension of this subject, dynamic
programming. The application of these techniques to deterministic,
nonlinear and time-varying systems forms the basis of Chapters 1
through 9.

The first part of the book assumes precise knowledge of the struc-
ture and parameters of the dynamic systems investigated and precise
measurements for feedback control. In practice, such precise knowl-
edge is seldom available. Thus, it is important to be able to predict
the sensitivity of controlled systems to random fluctuations in the
environment and in the measurement system. Chapters 10 through
14 are concerned with this topic, starting with a review of the funda-
mentals of probability and random processes and proceeding to the
design of the “best” control system, on the average, using noisy
measurements and taking into account random perturbations of the
system by the environment.

Our main objective has been to produce useful results which can
be easily translated into digital computer programs. Several versions
of the book in the form of lecture notes have been scrutinized by our
competent and critical students and colleagues, and we therefore
hope that most of the errors have been caught. However, we take
responsibility for any that may still exist.

This book can be, and has been, used for both one-semester and two-
semester courses in modern control theory. It can also be taught in
either the deterministic—stochastic or the introductory —advanced
sequence. The logical dependence of various chapters as well as the
breakdown of chapters into semester—long parts are shown at
the end of the table of contents.

The exercises form an integral part of the text. They either illus-
trate the subject matter covered or extend it and in some cases con-
stitute a semi-research problem. Serious students should pursue
them with diligence.

The authors are indebted to many persons for material. Special
thanks go to John V. Breakwell, Henry J. Kelley, R. E. Kalman,
George E. Leitmann, Placido Cicala, Colin C. Blaydon, Sheldon
Baron, Ragasami L. Kashyap, Walter F. Denham, Stuart E. Dreyfus,
Donald E. Johansen, Robert C. K. Lee, Stephen R. McReynolds,
Jason L. Speyer, Kevin S. Tait, Laurie J. Henrikson, Raman Mehra,
Mukund Desai, Robert Behn, and David Jacobson for papers and/or
discussions.

We are also indebted to Marion Remillard, Sandra Nagy, and Skippi
Torrance for typing the successive versions of the manuscript.

A. E. B.
Y.-C. H.
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Numerical solution of optimal |
programming and control problems

?

7.1 Introduction

Unless the system equations, the performance index, and the con-
straints are quite simple, we must employ numerical methods to
solve optimal programming and control problems. How‘ever, fthe
amount of numerical computation required for even a relatively sim-
ple problem is forbidding if it must be done by hand. This is why Fhe
calculus of variations found very little use in engineering and appbed
science until quite recently. The development of economical, hlglr}-
speed computers in the mid-1950’s has dramatically changed this
situation. It is now possible to solve complicated optimal program-
ming and control problems in a reasonable length of time and at a
reasonable cost. '
High-speed computers solve initial-value problems for sets of' dif-
ferential equations very readily. However, as we have seen, optimal
programming and control problems are at least two-point boundary-
value problems and, in some cases, multipoint boundary-value prob—
lems (e.g., when there are interior point constraints or state variable

inequality constraints). Finding solutions to these nonlinear two- |

point boundary-value problems is, in many cases, not a trivial exten-
sion of finding solutions to initial-value (one-point boundary-value)
problems. .

The nonlinear two-point boundary-value problem encountered in
a large class of optimal programming problems was summarized in
Section 2.8. The problem is to find

(a) the n state variables, x(t) ,
(b) the n influence tunctions, ),
(c) the m control variables, u(t),

to satisfy, simultaneously,

212
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(i) the n system differential equations (involving x, u),
(ii) then influence (adjoint, Euler-Lagrange) differential equations
(involving A, x, u), )
(iii) the m optimality conditions (involving A, x, u),
(iv)- the initial and final boundary conditions (involving x, \).

All numerical methods for the solution of such problems necessarily
involve either flooding or iterative procedures.

Flooding (or dynamic programming), as applied to two-point
boundary-value problems, can be described as a process of generating
many solutions satisfying the specified boundary conditions at one
end, using the unspecified boundary conditions as parameters. If
the correct range of parameters is chosen, some of the solutions
will pass through (or near) the desired boundary conditions at the
other end.

At the present time, all the proposed iterative procedures use
“successive linearization.” A nominal solution is chosen that satisfies
none, one, two, or three of the four conditions (i) through (iv) above;
then this nominal solution is modified by successive linearization so
that the remaining conditions are “also satisfied. Only three of the
fifteen possible approaches have been used extensively so far,
namely, the three shown in Table 7.1.1.

Table 7.1.1 Iterative Procedures

Nominal Solution Satisfies:

(i) (i) (iii) (iv)

System Influence Optimality Boundary
equations equations conditions conditions
Neighboring
extremal methods Yes Yes Yes No
Gradient methods Yes Yes No No
Quasilinearization
methods No No Yes Yes or No

When using neighboring extremal methods and quasilinearization
methods, we must solve a succession of linear two-point boundary-
value problems. Such problems can be solved by (a) finding the
transition matrix between unspecified boundary conditions at one end
and specified boundary conditions. at the other end, or by (b) “sweep-
ing” the boundary conditions from one end point to the other end
point, which involves solving a matrix Riccati equation (see Sections

6.2 and 6.6).
For all three classes of iterative procedures, it is possible to handle
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terminal constraints either by (a) gradient projection (linear penalty
functions) or by (b) nonlinear (usually quadratic) penalty functions.

7.2 Extremal field methods; dynamic programming

One method of solving optimal programming problems is systemati-
cally to choose values for the unspecified initial (or terminal) con-
ditions and compute the corresponding optimal solutions from the
initial (or terminal) point. Computation continues until the region of
the state space in and around the opposite point is so well covered
with optimal solutions that it is possible to interpolate the desired
optimal solution. Clearly, this is one way of solving the Hamilton-
Jacobi-Bellman (HJB) equation in a certain domain of the state space
(by the method of “characteristics”)t and it would be useful for gen-
erating the optimal nonlinear feedback law for terminal control if
all the optimal paths were computed backward from the terminal
hypersurface. Relatively simple examples of nonlinear optimal feed-
back control schemes computed in this way were given in Sections 4.1
and 4.3. ,
Another possibility is to solve the H]B partial differential equation
directly, starting at the terminal hypersurface. This is the procedure
called dynamic programming, discussed in Chapter 4. For problems
with more than two or three state variables, this procedure is not feasi-
ble even on the larger present-day computers. Even storing the an-
swer (the whole extremal field) for a problem with three or more state
variables usually requires an impractically large amount of space.

7.3 Neighboring extremal algorithms

Introduction

These methods are characterized by iterative algorithms for improv-
ing estimates of the unspecified initial (or terminal) conditions so as
to satisfy the specified terminal (or initial) conditions.

The main difficulty with these methods is getting started; i.e., find-

ing a first estimate of the unspecified conditions at one end that pro-
duces a solution reasonably close to the specified conditions at the
other end. The reason for this peculiar difficulty is that extremal solu-
tions are often very sensitive to small changes in the unspecified
boundary conditions. This extraordinary sensitivity is a direct result
of the nature of the Euler-Lagrange equations, which, as we have seen

#R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1I, New York:
Interscience, 1962, Chapter 2.
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in Chapter 2, are influence function equations. They are, in fact
adjoint differential equations to the linear perturbation syst(;m equa:
tions, where the linearization is made about an extremal path. If
the fundamental solutions to the linear perturbation system equati'ons
d'ecrease in magnitude with increasing time, the fundamental solu-
t19ns of the adjoint (Euler-Lagrange) equations increase in magnitude
leth increasing time. Thus, the solutions x(¢) and A(¢) of the differen-
tial equations tend to become widely different in orders of magnitude
as the integration proceeds in either direction. Since the number of
significant digits that can be carried in a computer is limited regard-
less of whether fixed-point or floating-point arithmetic operations are
used, the different growth of x(t) and A(¢) contributes greatly to the
loss of accuracy.t One manifestation of this problem is that transition
m.atrix solutions become ill-conditioned as the elements take on
widely different ranges of value.f Since inversion of the transition
matrix i.s necessarily part of the numerical method, the resultant ac-
curacy is very poor. Another aspect of the same problem is the fact
that small errors in guessing the influence functions at the initial time

may produce enormous errors in the influence functions at the termi-

nal time. This will be especially noticeable in highly dissipative
systems, such as systems with friction or drag. Since the system equa-
tions and the Euler-Lagrange equations are coupled together, it is
not u.n}lsual for the numerical integration, with poorly guessed i,nitial
copdltlons, to produce “wild” trajectories in the state space. These
trajectories may be so wild that values of x(t) and/or A(t) exceed the
numerical range of the computer!

In view of this starting difficulty, the direct integration method is
usually practical only for finding neighboring extremal solutions after

one extremal solution is obtained by some other method, such as a
gradient method. : ’

P

Some state variables specified at a fixed terminal time.

To set forth the basic ideas of this method, we consider first the rela-

tively simple class of problems treated in Section 2.4: Find u(f) to
minimize

J = olxt)] + |7 Lix(e)u(0,61 dt, (7.3.1)

where v
% =flx,ut), (7.3;2)
x(t,) 1is specified, (7.3.3)

tSee Kalman (1965).
{Large values all appear to be equal and small values become zero.
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xl(tf) -
Ylx(t)] = . =0, o...,% specified, (7.3.4)
¥
xq(tf) -
tyots specified. (7.3.5)
First-order necessary conditions for an extremal solution are
A= - (—'?i)Tx - (E)T, (7.3.6)
ox ax
)\.(t):<—ai> , j=q+1,...,n, (7.3.7)
N ox,
i t=t5
T
0= (—ai)Tx t (99—) . (7.3.8)
ou Ju

The differential equations (7.3.2) and (7.3.6) are to be solved with the
n initial conditions (7.3.3) and the n final conditions (7.??.4) p'lu.s
(7.3.7), using (7.3.8) to determine u(t). There are n unspecified ini-

tial conditions, A(,), and n unspecified terminal conditions,

(LA RN A (E) Xyt o L x, (8]
. A Transition-Matrix Algorithm. This class of problems may be treated
a = Cagfollows: T
STEP (a). Guess the n unspecified initial conditi.ons, A@to). (Altﬁzr-
natively, guess the n unspecified final conditions with obvious modifi-

cations to the succeeding steps.)

STep (b). Integrate (7.3.2) and (7.3.6) forward from t, to ¢, using
(7.3.8) to determine u(t).

STEP (c). Record x,(t),. . ., %,(t), Ay s(Es . - JAL(E)
STEP (d). Determine the (n X n) transition matrix [ap(tf)/a}\(to)] ,

where
ox,(¢) )
&x (tf> _ a“(tf)
bpulty) = sx_q @) | o\, BMt,) -
q_+1 f
L_S)\n(tf) ]

Sec. 7.3 * Neighboring Extremal Algorithms 217

(See two methods for doing this below.)

STEP (e). Choose S[L(tf) so as to bring the next solution closer to
desired values of u(t;). For example, one might choose Su(t,) =
—G[M(tf)—pf],O <e=<1.

STEP (f). With chosen values of 8u(t,) from Step (e), invert the transi-

tion matrix of Step (d) to find 8A(¢,) :

dult,) ™
8)\(150) = [Wto):l Su(tf) .
STEP (g). Using A, )pew = At,)oa + 6X(2,), repeat Steps (a) through
(f) until r(t,) has the specified values to the desired accuracy.

If the changes 3u(t,) in Step (e) are too large, the iterative procedure
may not converge. One way to check “size” is to compare Bt new —
p(t)oa With desired du(t,) ; if they differ by more than, say, 10 to 20%,
Step (e) should be repeated with smaller values of Sult,) .

The transition matrix in Step (d) above may be found in two differ-
ent ways: (1) direct numerical differentiation, and (2) determination
of unit solutions for the linear perturbation equations.

Direct numerical differentiation requires n additional integrations
of the nonlinear system (7.3.2) and (7.3.6) using (7.3.8). On each of
these integrations, one of components A,(t,) is changed by a small
amount from the original guess in Step (a). The n quantities SM(tf)
are recorded for each integration and divided by 8\,(¢,). In this way
the transition matrix [ap,(tf)/a)\(to)] is found. The difficulty with this
straightforward approach is the following: If8).(¢,) is chosen too small,
truncation error in integrating the nonlinear differential equations
makes the determination of 3u(t,) very inaccurate; if 8A,(t,) is chosen
too large, the linearity assumption will not be valid.

Determination of unit solutions requires n integrations of the 2nth-
order linear perturbation equations (6.1.21) and (6.1.22). On each of
these integrations, one of the components of dA(t,) is placed equal to
unity, with all the other components zero and dx(t,) = 0. This method
is more accurate than direct numerical differentiation, but it requires
additional computer programming. Furthermore, it may still produce
an ill-conditioned transition matrix if unit solutions differ widely in
numerical magnitude; the inversion required in Step (f) is then very
inaccurate.t ’
A Backward-Sweep Algorithm. An effective way around the dif-
ficulty of an ill-conditioned transition matrix is offered by the follow-
ing adaptation of the sweep method discussed in Section 6.2:

$See Problem 5, Section 5.2 for a way around the inversion of ill-conditioned matrices.
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STEP (a). Estimate the g parameters v* = [\, - .,)\q(tf)] and the
n — q unspecified terminal state variables [xqﬂ(tf), o x )]

from t, to t using
STEP (b). Integrate (7.3.2) and (7.3.6) backwm‘“d. 2 )
(7.3.8) to determine u(t), with boundary conditions (7.3.4), (7.3.7),
and the estimated quantities in Step (a).

i i i 6.2.11) through
STEP (c). Simultaneously with Step (b), integrate ( ‘
(6.2.13) backward with boundary conditions (6.2.3) through (6.2.5),
which in this case are

1, i=j, .

Rii(tf>:{o, i%j, i=1,....n, j=L....q.

' — - Choose 8x(t,) to
step (d). Record x(t,), A(t,), and (S R’Q'R),_, . »
come closer to the specified values of x(t,) . Theno, from (6.2.15), we
have 8A(t,) = (S — RTQ—lﬂ)t:tOBx(to) .

STEP (e). Integrate the perturbation equations (6.1.21) and (6.1.22)
forward with boundary conditions 8x(¢,) and 8A(t,) from Step (d).
Record dvT = [6)\1(tf),. . ,qu(tf)] and [8xq+1(tf),. .. ,an(tf)] .
StEP (f). Using ¥pew = Vo + dv and (%, Dnew = [x,(¢ ) ]oa + Sxi(tf).,
i=q+1,...,n, repeat Steps (a) through (f) until x(¢,) has the speci-
fied values to the desired accuracy.
Functions of the state variables specified at an unspecified terminal
time.
We now consider the more general problem of finding u(t) to
minimize

J= (b[x(tf),tf] + :fL[x(t),u(t),t] dt (performance index), (7.3.9)
where

% = fla,u,t) (n equations).- (7.3.10)
x(t )= x°; t and «x°specified (n initial conditions), (7.3.11)

] 4]

Plx(t)t] =0 (g terminal conditions). (7.3.12)

The terminal time, ¢, is determined implicitly by the terminal con-

ditions (7.3.12). .
First-order necessary conditions for an extremal solution are

f= (6_H_>T (7.3.13)

ox/
_oH (7.3.14)
T ou
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BCIJ)
M) = (57 - @as
() <ax o (7.3.15)
Qlx,up,t],_ = (%f + L) =0, (7.3.16)
where =y
Dlewt) = dlt) +y(ng), G202, I

The 2n differential equations (7.3.10) and (7.3.13) must be solved, and
the g + 1 parameters v and t, must be determined to satisfy the n
initial conditions (7.3.11) and the g+ n+ 1 terminal conditions
(7.3.12), (7.3.15), and (7.3.16), using (7.3.14) to determine u(t).

A Transition-Matrix Algorithm. The following procedure may be
used.

STEP (a). Guess the n terminal conditions x(t,) , the q parameters v,
and the terminal time t.

STEP (b). Determine ¥lx(t),t], and A, Qfx(t)u(t).v,t] from
(7.3.15) and (7.3.16); u(t,) must be determined from (7.3.14) evaluated
att =t,, using Mtf) and x(tf) .

STEP (c). Integrate (7.3.10) and (7.3.13) backward from t,to t,, us-
ing (7.3.14) to determine u(t) , and using the terminal conditions x(t,)
A(t,) from Steps (a) and (b).

STEP (d). Record x(t,).
STEP (e). Find the [(n+ g+ 1) X (n + g + 1)] transition matrix

a [x<to)7¢’aﬂ]
alx(t)w,t] ~

| et |50
do a[x(tf)3v’tf] dtf

STEP (f). Choose values of 8x(¢,) , dy , and dQ so as to bring the next
solution closer to the desired values of x(t,),y=0,and @ =0. For
example, one might choose

dx(t,) x(t,) — x°
A | =-elPlxt)t]|, O0<e=1.
dQ Qx(t,).t]

STEP (g). With chosen values of 8x(t,), diy, and dQ from Step (f),
invert the transition matrix of Step (e) to find x(t,), dv, and dtf.

where
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STEP (h). Using
x(tf) x(tf) dx<tf)
v = | P + dV s
b |new te o dtf

repeat Steps (a) through (h) until x(z)) ==z, Plx(t) ] =0, and
Q[x(z),u(tf),v,tf] = 0 to the desired accuracy. Note that x(tf) = Sx(tf) +
x(t,) dt,.

ff thfe changes in Step (f) are too large, the iterative procedure will
not converge. One way to avoid this is to compare the actual changes
in x(¢,), ¥, and Q with desired changes: if they differ by more than,
say, 10 to 20%, Step (h) should be repeated with smaller values of
8x(t,) , d, and dQ) .

The transition matrix in Step (e) may be found in two different ways:

(1) direct numerical differentiation and (2) determination of unit solu--

tions for the linear perturbation equations.

Direct numerical differentiation requires n+q +1 additional
backward integrations of the nonlinear system (7.3.10) and (7.3.13)
using (7.3.24). On each of these integrations, one of the components
of x(¢,) , v, and ¢, is changed by a small amount from the original guess
in Step (a). The n + g + 1 quantities 8x(t,), dy , and dQ are recorded
for each choice and divided by the change from the original guess.
In this way the transition matrix in Step (e) can be found. The
difficulty with this straightforward approach is the same as that men-
tioned in the previous section.

Determination of unit solutions requires n + q + 1 backward inte-
grations of the 2nth-order linear perturbation equations (6.1.21) and
(6.1.22). On each of these integrations, one of the components of
[8x(tf),dv,dt] is placed equal to unity with all the other components
zero. The ({etermination of 8A(¢)), dy , and dQ is made by considering
the first-order perturbations of the terminal conditions (7.3.15),
(7.3.12), and (7.3.16) which were given in (6.5.9) through (6.5.11).
Equations (6.5.10) and (6.5.11) form part of the transition matrix in
Step (e), whereas {ax(to)/a[x(tf),v,tf]} must be found by integrating the
perturbation equations backwards n + g + 1 times with 8\ () obtained
from (6.5.9) for unit values of 8x(t,), dv, and dt,. While this method
is more accurate than direct numerical differentiation, it obviously
requires more computer programming and is prone to the same diffi-
culties as described in the previous section.

Note that a necessary condition for a minimum is

),

t:tf

(7.3.17)
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If tl}e inequality holds in Equation (7.3.17), we may solve (6.5.11) for
dtf in terms of 8x(¢) and dv and substitute the result into (6.5.9) and
(6.5.10); in this case, only n_+ g unit solutions need be found to deter-
‘mine the transition matrix.

A Backward-Sweep Algorithm. One of the possible difficulties with
the transition-matrix approach is that sufficient numerical accuracy
may not be attainable even with the technique of finding unit solu-
tions for the linear perturbation equations. This is particularly true
for dissipative systems, for reasons mentioned earlier in this section.
Usually, an effective way to avoid this difficulty is to use the follow-

ing adaptation of the backward-sweep approacht presented in Sec-
tion 6.6:

STEPS (a), (b), and (c).

STEP (d). Simultaneously with Step (c), inte
. s grate (6.6.8) through
(6.6.13) with boundary conditions given there. ¢

Same as in the Transition-Matrix Algorithm.

STEP (e). 'Record x, N\, S,R,Q, m,n,aatt=t . Choose dx(¢,), dy,
and dQ as in Step (f) of the Transition Matrix Algorithm. Then, from

(6.6.14), (6.6.15), and (6.6.18), determine dv ,dt,, and 8A(¢ ). Record
dv and dt,. ! ’

STEP (f). Integrate the perturbation equations (6.1.21) and (6.1.22)

forward with boundary conditions 8x(¢,) and 8\(¢,). Record =
Sx(tf) + x(tf) dtf’ o n ( o> . €Ccor dx(tf) =

STEP (g). Using

x(t,) x(t,) dx(t,)
=1y + | dv ,
te lnew |t |aa | di

repeat Steps (a) through (g) until x(t)zx",tp[x(tf),tf]=0, and

0

Q[x(tf),u(tf),v,tf] = 0 to the desired accuracy.

First-order gradient algorithms

Introduction

Qradient methods were developed to surmount the “initial guess”
difficulty associated with direct integration methods (see Introduction
Qf Section 7.3). They are characterized by iterative algorithms for
improving estimates of the control histories, u(t), so as to come closer
to satisfying the optimality conditions and the boundary conditions.

+The reason for this is that there is less chance of difference in growth in the elements
of S(¢) than in X(¢) and A(t), used in the transition matrix algorithm.



