, 1 Applied Optimal Control

A Blaisdell Book in the Pure and Applied Sciences : g OPTIMIZATION, ‘ESTIMATIO’N, AND CONTROL

Arthur E. Bryson, Jr. Yu-Chi Ho

Stanford University Harvard University

Blaisdell Publishing Company
A Division of Ginn and Company

Waltham, Massachusetts / Toronto / London

To Harvard University, its high standards, and its

great tradition of seeking the truth, and to our teachers,
colleagues, and students who have all taught and
inspired us.

Copyright © 1969 by Blaisdell Publishing Company,

A Division of Ginn and Company.

All rights reserved. No part of the material covered by
this copyright may be produced in any form or by any
means of reproduction.

Library of Congress Catalog Card Number: 69-10425
Printed in the United States of America.

Preface

This text is intended for use at the senior-graduate level for uni-
versity courses on the analysis and design of dynamic systems and
for independent study by engineers and applied mathematicians.
An elementary knowledge of mechanics and ordinary differential
equations is presumed. Some acquaintance with matrix algebra and
the properties of linear systems is desirable, but the required fa-
miliarity can be obtained by studying the two appendices. The book
grew out of a set of lecture notes for a Harvard University summer
school program on optimization of dynamic systems given in 1963.
These notes were rewritten and extended for graduate courses given
at Harvard from 1963 to 1968 and at M.I.T. in 1966.

The book is concerned with the analysis and design of complicated
dynamic systems. Particular emphasis is placed on determining the
“best” way to guide and/or control such systems. Over the past
twenty-five years, a great body of knowledge has been builtup on the
subject of feedback control systems for linear, time-invariant dynamic
systems. This knowledge plays an important role in our technology,
and almost every engineering school recognizes this fact by teaching
courses in this area. However, many dynamic systems— such as aero-
space systems —are nonlinear and/or time-varying, and the techniques
for analysis and design of linear, time-invariant systems are, in gen-
eral, not applicable to these more complicated systems.

The appearance of practical, high-speed digital computers in the
1950’s provided an essential tool for dealing with nonlinear and time-
varying systems. Engineers were quick to take advantage of these
remarkable computers to do extensive cut-and-try design work on
paper instead of in the development laboratory. In many instances,
particularly when designing guidance and control systems, it became
clear that a more systematic approach was desirable. This led to a
renewed interest in an old subject, the calculus of variations, and to

the discovery of an interesting extension of this subject, dynamic
programming. The application of these techniques to deterministic,
nonlinear and time-varying systems forms the basis of Chapters 1
through 9.

The first part of the book assumes precise knowledge of the struc-
ture and parameters of the dynamic systems investigated and precise
measurements for feedback control. In practice, such precise knowl-
edge is seldom available. Thus, it is important to be able to predict
the sensitivity of controlled systems to random fluctuations in the
environment and in the measurement system. Chapters 10 through
14 are concerned with this topic, starting with a review of the funda-
mentals of probability and random processes and proceeding to the
design of the “best” control system, on the average, using noisy
measurements and taking into account random perturbations of the
system by the environment.

Our main objective has been to produce useful results which can
be easily translated into digital computer programs. Several versions
of the book in the form of lecture notes have been scrutinized by our
competent and critical students and colleagues, and we therefore
hope that most of the errors have been caught. However, we take
responsibility for any that may still exist.

This book can be, and has been, used for both one-semester and two-
semester courses in modern control theory. It can also be taught in
either the deterministic—stochastic or the introductory —advanced
sequence. The logical dependence of various chapters as well as the
breakdown of chapters into semester—long parts are shown at
the end of the table of contents.

The exercises form an integral part of the text. They either illus-
trate the subject matter covered or extend it and in some cases con-
stitute a semi-research problem. Serious students should pursue
them with diligence.

The authors are indebted to many persons for material. Special
thanks go to John V. Breakwell, Henry J. Kelley, R. E. Kalman,
George E. Leitmann, Placido Cicala, Colin C. Blaydon, Sheldon
Baron, Ragasami L. Kashyap, Walter F. Denham, Stuart E. Dreyfus,
Donald E. Johansen, Robert C. K. Lee, Stephen R. McReynolds,
Jason L. Speyer, Kevin S. Tait, Laurie J. Henrikson, Raman Mehra,
Mukund Desai, Robert Behn, and David Jacobson for papers and/or
discussions.

We are also indebted to Marion Remillard, Sandra Nagy, and Skippi
Torrance for typing the successive versions of the manuscript.

A. E. B.
Y.-C. H.

Yot

o~

Contents

1. Parameter optimization problems

1.1 Problems without constraints

1.2 Problems with equality constraints; necessary conditions
for a stationary point

1.3 Problems with equality constraints; sufficient conditions
for a local minimum

1.4 Neighboring optimum solutions and the interpretation of the
Lagrange multipliers

1.5 Numerical solution by a first-order gradient method

1.6 Numerical solution by a second-order gradient method

1.7 Problems with inequality constraints |

1.8 Linear programming problems

1.9 Numerical solution of problems with inequality constraints
1.10 The penalty function methods k

2. Optimization problems for dynamic systems

2.1 Single-stage systems

2.2 Multistage systems; no terminal constraints, fixed number
of stages '

2.3 Continuous systems; no terminal constraints, fixed
terminal time

2.4 Continuous systems; some state variables specified at a
fixed terminal time

2.5 Continuous systems with functions of the state variables
prescribed at a fixed terminal time

2.6 Multistage systems; functions of the state variables specified
at the terminal stage .

18
19
21
24
29
36
39

42

43

47

55

65

69

T o e

2.7 Continuous systems; some state variables specified at an 6. Neighboring extremals and the second variation
unspecified terminal time (including minimum-time

problems) 71 Lo 6.1 Neighboring extremal paths (final time specified) 177
2.8 Continuous systems; functions of the state variables 87 . 6.2 Determination of ne1ghbor1ng extremal paths by the
specified at an unspecified terminal time, .including backward sweep method 179
minimum-time problems) 6.3 Sufficient conditions for a local minimum 181
3. Optimization problems fOf‘ dynamic systems‘ b 6.4 Perturbation feedback control (final time specified) 193
with path constraints . 6.5 Neighboring extremal paths with final time unspecified 197
: 6.6 Determination of neighboring extremal paths by the backward
3.1 Integral constraints 90 sweep method with final time unspecified 199
3.2 Control variable equality constraints 95 6.7 Suflicient conditions for a Iocal minimum with final time
3.3 Equality constraints on functions of the control and unspecified 201
state variables 99 6.8 Perturbation feedback control with final time unspec1ﬁed 202
3.4 Equality constraints on functions of thfe state variables ‘100 6.9 Sufficient conditions for a strong minimum . 205
3.5 Interior-point constraints . 101 . 6.10 A multistage version of the backward sweep ‘ 208
3.6 Discontinuities in the system equations at interior points 104 6.11 Sufficient conditions for a local minimum for multistage
3.7 Discontinuities in the state variables at interior points 106 o systems 911
3.8 Inequality constraints on the control variables 108 -
3.9 Linear optimization problems; “bang-bang” control 110 D 7. Numerical solution OfOPtimal programming and
3.10 Inequality constraints on functions of the control v control problems)

" and state variables 117 7.1 Introduction , . oo
3.11 Inequality constraints on function? of tﬂhe state Vtatnables 117 72 Extremal field methods: dynamic programming 214
3.12 The separate computation of arcs in problems with state . . _ _

variable inequality 124 e . 7.3 Neighboring extremal algorithms 214

3.13 Comer conditions 125 j 7.4 First-order gradient algorithms 221

i 7.5 Second-order gradient algorithms 228

. ‘ 7.6 A quasilinearization algorithm 234

4. Opttmal f eedback control » 7.7 A second-order gradient algorithm for multistage systems 236
4.1 The extremal field approach 128 - 7.8 A conjugate-gradient algorithm 237

4.2 Dynamic programming; the partial differential equation for _k ‘ 7.9 Problems with inequality constraints on the control variables 240

the optimal return function 131 ‘ 5 }‘ 7.10 Problems with inequality constraints on the state variables 242

4.3 gfﬁgﬁ;?fntlgisdégfﬁllg; of the state spa<‘:e by use of 141 7.11 Mathemetical programming approach 243

5. Linear systems with quadratic criteria.: : 8. Singular solutions of optzmzzatwn and
linear feedback control problems

5.1 Terminal controllers and regulators; introduction ‘ 148

8.1 Introduction 246
5.2 Terminal controllers; quadratic penalty function on

terminal error 148 8.2 Singular solutions of optimization problems for linear

dynamic systems with quadratic criteria 247

:) i labili 158
5.3 Terminal controllers; zero terminal error and controllability .8.3 Singular solutions of optimization problems for

5.4 Regulators and stability , 167) nonlinear dynamic systems 252 -

8.4
8.5
8.6

A generalized convexity condition for singular arcs
Conditions at a junction

A resource allocation problem involving inequality
constraints and singular arcs

9. Differential games

9.1
9.2
9.3
9.4
9.5
9.6

Discrete games

Continuous games

Differential games

Linear-quadratic pursuit-evasion games

A minimax-time intercept problem with bounded controls

A discussion of differential games

10. Some concepts of probability

10.1
10.2
10.3
10.4
10.5
10.6
10.7

Discrete-valued random scalars

Discrete-valued random vectors

Correlation, independence, and conditional probabilities
Continuous-valued random variables

Common probability mass functions

Common probability density functions

Gaussian density function for a random vector

11. Introduction to random processes

11.1
11.2
11.3
11.4
11.5

11.6
11.7

Random sequences and the markov property
Gauss-markov random sequences
Random processes and the markov property
Gauss-markov random processes

Approximation of a gauss-markov process by a
gauss-markov sequence

State variables and the markov property

Processes with independent increments

12. Optimal filtering and prediction

12.1
12.2
12.3
12.4

Introduction .
Estimation of parameters, using weighted least-squares
Optimal filtering for single-stage linear transitions

Optimal filtering and prediction for linear multistage
processes

257
261

262

271
274
277
282
289
293

296
297
299
300
303
306
309

315
320
326
328

342
344
346

348
349
359

360

12.5

12.6
12.7
12.8

12.9

Optimal filtering for continuous linear dynamic systems
with continuous measurements

Optimal filtering for nonlinear dynamic processes
Estimation of parameters using a Bayesian approach

Bayesian approach to optimal filtering and prediction for
multistage systems

Detection of gaussian signal in noise

13. Optimal smoothing and interpolation

13.1
13.2
13.3
13.4
13.5
13.6

Optimal smoothing for single-state transitions

Optimal smoothing for multistage processes

Optimal smoothing and interpolation for continuous processes

Optimal smoothing for nonlinear dynamic processes
Sequentially-correlated measurement noise

Time-correlated measurement noise

14. Optimal feedback control in the presence

of uncertainty
14.1 Introduction)
14.2 Continuous linear systems with white process noise and

14.3

144

14.5

14.6

147

14.8

perfect knowledge of the state

Continuous linear systems with process and measurements
containing additive white noise; the certainty-equivalence
principle

Average behavior of an optimally controlled system

Synthesis of regulators for stationary linear systems with
stationary additive white noise

Synthesis of terminal controllers for linear systems with
additive white noise

Multistage linear systems with additive purely random
noise; the discrete certainty-equivalence principle

Optimum feedback control for nonlinear systems with additive

white noise

Appendix A—Some basic mathematical facts

Al
A2
A3
A4

Introduction
Notation -
Matrix algebra and geometrical concepts

Elements of ordinary differential equations

364
373
377

382
388

390
393
395
400
400
405

408
408
414
416
418
422
428

432

438
438
441
448

Appendix B— Properties of linear systems

Bl Linear algebraic equations 455
B2 Controllability 455
B3 Observability 457
B4 Stability v 458
B5 Canonical transformations 459
References 462
Multiple-choice examination 467
Index 477
LOGICAL DEPENDENCE OF CHAPTERS
Appendices A & B Deterministic Part = Chapters 1-9
\i 1l0 Stochastic Part = Chapters 10-14
3] i Introductory Part = Chapter 1 through Section 5
N Chapter 2 through Section 3
l 2 11 Chapters 4, 5(excluding Section 3)
v Chapter 7 through Section 2
8 1 Chapters 10-12
12 — 13 Advanced Part = Remainder of book
l

©
i

Qe O T

—14

Applied Optimal Control

Numerical solution of optimal |
programming and control problems

?

7.1 Introduction

Unless the system equations, the performance index, and the con-
straints are quite simple, we must employ numerical methods to
solve optimal programming and control problems. How‘ever, fthe
amount of numerical computation required for even a relatively sim-
ple problem is forbidding if it must be done by hand. This is why Fhe
calculus of variations found very little use in engineering and appbed
science until quite recently. The development of economical, hlglr}-
speed computers in the mid-1950’s has dramatically changed this
situation. It is now possible to solve complicated optimal program-
ming and control problems in a reasonable length of time and at a
reasonable cost. '
High-speed computers solve initial-value problems for sets of' dif-
ferential equations very readily. However, as we have seen, optimal
programming and control problems are at least two-point boundary-
value problems and, in some cases, multipoint boundary-value prob—
lems (e.g., when there are interior point constraints or state variable

inequality constraints). Finding solutions to these nonlinear two- |

point boundary-value problems is, in many cases, not a trivial exten-
sion of finding solutions to initial-value (one-point boundary-value)
problems. .

The nonlinear two-point boundary-value problem encountered in
a large class of optimal programming problems was summarized in
Section 2.8. The problem is to find

(a) the n state variables, x(t) ,
(b) the n influence tunctions,),
(c) the m control variables, u(t),

to satisfy, simultaneously,

212

Sec. 7.1 < Introduction - 213

(i) the n system differential equations (involving x, u),
(ii) then influence (adjoint, Euler-Lagrange) differential equations
(involving A, x, u),)
(iii) the m optimality conditions (involving A, x, u),
(iv)- the initial and final boundary conditions (involving x, \).

All numerical methods for the solution of such problems necessarily
involve either flooding or iterative procedures.

Flooding (or dynamic programming), as applied to two-point
boundary-value problems, can be described as a process of generating
many solutions satisfying the specified boundary conditions at one
end, using the unspecified boundary conditions as parameters. If
the correct range of parameters is chosen, some of the solutions
will pass through (or near) the desired boundary conditions at the
other end.

At the present time, all the proposed iterative procedures use
“successive linearization.” A nominal solution is chosen that satisfies
none, one, two, or three of the four conditions (i) through (iv) above;
then this nominal solution is modified by successive linearization so
that the remaining conditions are “also satisfied. Only three of the
fifteen possible approaches have been used extensively so far,
namely, the three shown in Table 7.1.1.

Table 7.1.1 Iterative Procedures

Nominal Solution Satisfies:

(i) (i) (iii) (iv)

System Influence Optimality Boundary
equations equations conditions conditions
Neighboring
extremal methods Yes Yes Yes No
Gradient methods Yes Yes No No
Quasilinearization
methods No No Yes Yes or No

When using neighboring extremal methods and quasilinearization
methods, we must solve a succession of linear two-point boundary-
value problems. Such problems can be solved by (a) finding the
transition matrix between unspecified boundary conditions at one end
and specified boundary conditions. at the other end, or by (b) “sweep-
ing” the boundary conditions from one end point to the other end
point, which involves solving a matrix Riccati equation (see Sections

6.2 and 6.6).
For all three classes of iterative procedures, it is possible to handle

214 © Numerical Solutions of Optimization Problems ¢ Ch.7

terminal constraints either by (a) gradient projection (linear penalty
functions) or by (b) nonlinear (usually quadratic) penalty functions.

7.2 Extremal field methods; dynamic programming

One method of solving optimal programming problems is systemati-
cally to choose values for the unspecified initial (or terminal) con-
ditions and compute the corresponding optimal solutions from the
initial (or terminal) point. Computation continues until the region of
the state space in and around the opposite point is so well covered
with optimal solutions that it is possible to interpolate the desired
optimal solution. Clearly, this is one way of solving the Hamilton-
Jacobi-Bellman (HJB) equation in a certain domain of the state space
(by the method of “characteristics”)t and it would be useful for gen-
erating the optimal nonlinear feedback law for terminal control if
all the optimal paths were computed backward from the terminal
hypersurface. Relatively simple examples of nonlinear optimal feed-
back control schemes computed in this way were given in Sections 4.1
and 4.3. ,
Another possibility is to solve the H]B partial differential equation
directly, starting at the terminal hypersurface. This is the procedure
called dynamic programming, discussed in Chapter 4. For problems
with more than two or three state variables, this procedure is not feasi-
ble even on the larger present-day computers. Even storing the an-
swer (the whole extremal field) for a problem with three or more state
variables usually requires an impractically large amount of space.

7.3 Neighboring extremal algorithms

Introduction

These methods are characterized by iterative algorithms for improv-
ing estimates of the unspecified initial (or terminal) conditions so as
to satisfy the specified terminal (or initial) conditions.

The main difficulty with these methods is getting started; i.e., find-

ing a first estimate of the unspecified conditions at one end that pro-
duces a solution reasonably close to the specified conditions at the
other end. The reason for this peculiar difficulty is that extremal solu-
tions are often very sensitive to small changes in the unspecified
boundary conditions. This extraordinary sensitivity is a direct result
of the nature of the Euler-Lagrange equations, which, as we have seen

#R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1I, New York:
Interscience, 1962, Chapter 2.

Sec. 7.3 + Neighboring Extremal Algorithms . 215

in Chapter 2, are influence function equations. They are, in fact
adjoint differential equations to the linear perturbation syst(;m equa:
tions, where the linearization is made about an extremal path. If
the fundamental solutions to the linear perturbation system equati'ons
d'ecrease in magnitude with increasing time, the fundamental solu-
t19ns of the adjoint (Euler-Lagrange) equations increase in magnitude
leth increasing time. Thus, the solutions x(¢) and A(¢) of the differen-
tial equations tend to become widely different in orders of magnitude
as the integration proceeds in either direction. Since the number of
significant digits that can be carried in a computer is limited regard-
less of whether fixed-point or floating-point arithmetic operations are
used, the different growth of x(t) and A(¢) contributes greatly to the
loss of accuracy.t One manifestation of this problem is that transition
m.atrix solutions become ill-conditioned as the elements take on
widely different ranges of value.f Since inversion of the transition
matrix i.s necessarily part of the numerical method, the resultant ac-
curacy is very poor. Another aspect of the same problem is the fact
that small errors in guessing the influence functions at the initial time

may produce enormous errors in the influence functions at the termi-

nal time. This will be especially noticeable in highly dissipative
systems, such as systems with friction or drag. Since the system equa-
tions and the Euler-Lagrange equations are coupled together, it is
not u.n}lsual for the numerical integration, with poorly guessed i,nitial
copdltlons, to produce “wild” trajectories in the state space. These
trajectories may be so wild that values of x(t) and/or A(t) exceed the
numerical range of the computer!

In view of this starting difficulty, the direct integration method is
usually practical only for finding neighboring extremal solutions after

one extremal solution is obtained by some other method, such as a
gradient method. : ’

P

Some state variables specified at a fixed terminal time.

To set forth the basic ideas of this method, we consider first the rela-

tively simple class of problems treated in Section 2.4: Find u(f) to
minimize

J = olxt)] + |7 Lix(e)u(0,61 dt, (7.3.1)

where v
% =flx,ut), (7.3;2)
x(t,) 1is specified, (7.3.3)

tSee Kalman (1965).
{Large values all appear to be equal and small values become zero.

216 - Numerical Solution of Optimization Problems * Ch. 7
xl(tf) -
Ylx(t)] = . =0, o...,% specified, (7.3.4)
¥
xq(tf) -
tyots specified. (7.3.5)
First-order necessary conditions for an extremal solution are
A= - (—'?i)Tx - (E)T, (7.3.6)
ox ax
)\.(t):<—ai> , j=q+1,...,n, (7.3.7)
N ox,
i t=t5
T
0= (—ai)Tx t (99—) . (7.3.8)
ou Ju

The differential equations (7.3.2) and (7.3.6) are to be solved with the
n initial conditions (7.3.3) and the n final conditions (7.??.4) p'lu.s
(7.3.7), using (7.3.8) to determine u(t). There are n unspecified ini-

tial conditions, A(,), and n unspecified terminal conditions,

(LA RN A (E) Xyt o L x, (8]
. A Transition-Matrix Algorithm. This class of problems may be treated
a = Cagfollows: T
STEP (a). Guess the n unspecified initial conditi.ons, A@to). (Altﬁzr-
natively, guess the n unspecified final conditions with obvious modifi-

cations to the succeeding steps.)

STep (b). Integrate (7.3.2) and (7.3.6) forward from t, to ¢, using
(7.3.8) to determine u(t).

STEP (c). Record x,(t),. . ., %,(t), Ay s(Es . - JAL(E)
STEP (d). Determine the (n X n) transition matrix [ap(tf)/a}\(to)] ,

where
ox,(¢))
&x (tf> _ a“(tf)
bpulty) = sx_q @) | o\, BMt,) -
q_+1 f
L_S)\n(tf)]

Sec. 7.3 * Neighboring Extremal Algorithms 217

(See two methods for doing this below.)

STEP (e). Choose S[L(tf) so as to bring the next solution closer to
desired values of u(t;). For example, one might choose Su(t,) =
—G[M(tf)—pf],O <e=<1.

STEP (f). With chosen values of 8u(t,) from Step (e), invert the transi-

tion matrix of Step (d) to find 8A(¢,) :

dult,) ™
8)\(150) = [Wto):l Su(tf) .
STEP (g). Using A,)pew = At,)oa + 6X(2,), repeat Steps (a) through
(f) until r(t,) has the specified values to the desired accuracy.

If the changes 3u(t,) in Step (e) are too large, the iterative procedure
may not converge. One way to check “size” is to compare Bt new —
p(t)oa With desired du(t,) ; if they differ by more than, say, 10 to 20%,
Step (e) should be repeated with smaller values of Sult,) .

The transition matrix in Step (d) above may be found in two differ-
ent ways: (1) direct numerical differentiation, and (2) determination
of unit solutions for the linear perturbation equations.

Direct numerical differentiation requires n additional integrations
of the nonlinear system (7.3.2) and (7.3.6) using (7.3.8). On each of
these integrations, one of components A,(t,) is changed by a small
amount from the original guess in Step (a). The n quantities SM(tf)
are recorded for each integration and divided by 8\,(¢,). In this way
the transition matrix [ap,(tf)/a)\(to)] is found. The difficulty with this
straightforward approach is the following: If8).(¢,) is chosen too small,
truncation error in integrating the nonlinear differential equations
makes the determination of 3u(t,) very inaccurate; if 8A,(t,) is chosen
too large, the linearity assumption will not be valid.

Determination of unit solutions requires n integrations of the 2nth-
order linear perturbation equations (6.1.21) and (6.1.22). On each of
these integrations, one of the components of dA(t,) is placed equal to
unity, with all the other components zero and dx(t,) = 0. This method
is more accurate than direct numerical differentiation, but it requires
additional computer programming. Furthermore, it may still produce
an ill-conditioned transition matrix if unit solutions differ widely in
numerical magnitude; the inversion required in Step (f) is then very
inaccurate.t ’
A Backward-Sweep Algorithm. An effective way around the dif-
ficulty of an ill-conditioned transition matrix is offered by the follow-
ing adaptation of the sweep method discussed in Section 6.2:

$See Problem 5, Section 5.2 for a way around the inversion of ill-conditioned matrices.

218 x Numerical Solution of Optimization Problems * Ch. 7

STEP (a). Estimate the g parameters v* = [\, - .,)\q(tf)] and the
n — q unspecified terminal state variables [xqﬂ(tf), o x)]

from t, to t using
STEP (b). Integrate (7.3.2) and (7.3.6) backwm‘“d. 2)
(7.3.8) to determine u(t), with boundary conditions (7.3.4), (7.3.7),
and the estimated quantities in Step (a).

i i i 6.2.11) through
STEP (c). Simultaneously with Step (b), integrate (‘
(6.2.13) backward with boundary conditions (6.2.3) through (6.2.5),
which in this case are

1, i=j, .

Rii(tf>:{o, i%j, i=1,....n, j=L....q.

' — - Choose 8x(t,) to
step (d). Record x(t,), A(t,), and (S R’Q'R),_, . »
come closer to the specified values of x(t,) . Theno, from (6.2.15), we
have 8A(t,) = (S — RTQ—lﬂ)t:tOBx(to) .

STEP (e). Integrate the perturbation equations (6.1.21) and (6.1.22)
forward with boundary conditions 8x(¢,) and 8A(t,) from Step (d).
Record dvT = [6)\1(tf),. . ,qu(tf)] and [8xq+1(tf),. .. ,an(tf)] .
StEP (f). Using ¥pew = Vo + dv and (%, Dnew = [x,(¢)]oa + Sxi(tf).,
i=q+1,...,n, repeat Steps (a) through (f) until x(¢,) has the speci-
fied values to the desired accuracy.
Functions of the state variables specified at an unspecified terminal
time.
We now consider the more general problem of finding u(t) to
minimize

J= (b[x(tf),tf] + :fL[x(t),u(t),t] dt (performance index), (7.3.9)
where

% = fla,u,t) (n equations).- (7.3.10)
x(t)= x°; t and «x°specified (n initial conditions), (7.3.11)

] 4]

Plx(t)t] =0 (g terminal conditions). (7.3.12)

The terminal time, ¢, is determined implicitly by the terminal con-

ditions (7.3.12). .
First-order necessary conditions for an extremal solution are

f= (6_H_>T (7.3.13)

ox/
_oH (7.3.14)
T ou

Sec. 7.3 e« Neighboring Extremal Algorithms) 219
BCIJ)
M) = (57 - @as
() <ax o (7.3.15)
Qlx,up,t],_ = (%f + L) =0, (7.3.16)
where =y
Dlewt) = dlt) +y(ng), G202, I

The 2n differential equations (7.3.10) and (7.3.13) must be solved, and
the g + 1 parameters v and t, must be determined to satisfy the n
initial conditions (7.3.11) and the g+ n+ 1 terminal conditions
(7.3.12), (7.3.15), and (7.3.16), using (7.3.14) to determine u(t).

A Transition-Matrix Algorithm. The following procedure may be
used.

STEP (a). Guess the n terminal conditions x(t,) , the q parameters v,
and the terminal time t.

STEP (b). Determine ¥lx(t),t], and A, Qfx(t)u(t).v,t] from
(7.3.15) and (7.3.16); u(t,) must be determined from (7.3.14) evaluated
att =t,, using Mtf) and x(tf) .

STEP (c). Integrate (7.3.10) and (7.3.13) backward from t,to t,, us-
ing (7.3.14) to determine u(t) , and using the terminal conditions x(t,)
A(t,) from Steps (a) and (b).

STEP (d). Record x(t,).
STEP (e). Find the [(n+ g+ 1) X (n + g + 1)] transition matrix

a [x<to)7¢’aﬂ]
alx(t)w,t] ~

| et |50
do a[x(tf)3v’tf] dtf

STEP (f). Choose values of 8x(¢,) , dy , and dQ so as to bring the next
solution closer to the desired values of x(t,),y=0,and @ =0. For
example, one might choose

dx(t,) x(t,) — x°
A | =-elPlxt)t]|, O0<e=1.
dQ Qx(t,).t]

STEP (g). With chosen values of 8x(t,), diy, and dQ from Step (f),
invert the transition matrix of Step (e) to find x(t,), dv, and dtf.

where

220 b Numerical Solution of Optimization Problems «.Ch.7

STEP (h). Using
x(tf) x(tf) dx<tf)
v = | P + dV s
b |new te o dtf

repeat Steps (a) through (h) until x(z)) ==z, Plx(t)] =0, and
Q[x(z),u(tf),v,tf] = 0 to the desired accuracy. Note that x(tf) = Sx(tf) +
x(t,) dt,.

ff thfe changes in Step (f) are too large, the iterative procedure will
not converge. One way to avoid this is to compare the actual changes
in x(¢,), ¥, and Q with desired changes: if they differ by more than,
say, 10 to 20%, Step (h) should be repeated with smaller values of
8x(t,) , d, and dQ) .

The transition matrix in Step (e) may be found in two different ways:

(1) direct numerical differentiation and (2) determination of unit solu--

tions for the linear perturbation equations.

Direct numerical differentiation requires n+q +1 additional
backward integrations of the nonlinear system (7.3.10) and (7.3.13)
using (7.3.24). On each of these integrations, one of the components
of x(¢,) , v, and ¢, is changed by a small amount from the original guess
in Step (a). The n + g + 1 quantities 8x(t,), dy , and dQ are recorded
for each choice and divided by the change from the original guess.
In this way the transition matrix in Step (e) can be found. The
difficulty with this straightforward approach is the same as that men-
tioned in the previous section.

Determination of unit solutions requires n + q + 1 backward inte-
grations of the 2nth-order linear perturbation equations (6.1.21) and
(6.1.22). On each of these integrations, one of the components of
[8x(tf),dv,dt] is placed equal to unity with all the other components
zero. The ({etermination of 8A(¢)), dy , and dQ is made by considering
the first-order perturbations of the terminal conditions (7.3.15),
(7.3.12), and (7.3.16) which were given in (6.5.9) through (6.5.11).
Equations (6.5.10) and (6.5.11) form part of the transition matrix in
Step (e), whereas {ax(to)/a[x(tf),v,tf]} must be found by integrating the
perturbation equations backwards n + g + 1 times with 8\ () obtained
from (6.5.9) for unit values of 8x(t,), dv, and dt,. While this method
is more accurate than direct numerical differentiation, it obviously
requires more computer programming and is prone to the same diffi-
culties as described in the previous section.

Note that a necessary condition for a minimum is

),

t:tf

(7.3.17)

7.4

Sec. 7.4 « First-Order Gradient Algorithms 221

If tl}e inequality holds in Equation (7.3.17), we may solve (6.5.11) for
dtf in terms of 8x(¢) and dv and substitute the result into (6.5.9) and
(6.5.10); in this case, only n_+ g unit solutions need be found to deter-
‘mine the transition matrix.

A Backward-Sweep Algorithm. One of the possible difficulties with
the transition-matrix approach is that sufficient numerical accuracy
may not be attainable even with the technique of finding unit solu-
tions for the linear perturbation equations. This is particularly true
for dissipative systems, for reasons mentioned earlier in this section.
Usually, an effective way to avoid this difficulty is to use the follow-

ing adaptation of the backward-sweep approacht presented in Sec-
tion 6.6:

STEPS (a), (b), and (c).

STEP (d). Simultaneously with Step (c), inte
. s grate (6.6.8) through
(6.6.13) with boundary conditions given there. ¢

Same as in the Transition-Matrix Algorithm.

STEP (e). 'Record x, N\, S,R,Q, m,n,aatt=t . Choose dx(¢,), dy,
and dQ as in Step (f) of the Transition Matrix Algorithm. Then, from

(6.6.14), (6.6.15), and (6.6.18), determine dv ,dt,, and 8A(¢). Record
dv and dt,. ! ’

STEP (f). Integrate the perturbation equations (6.1.21) and (6.1.22)

forward with boundary conditions 8x(¢,) and 8\(¢,). Record =
Sx(tf) + x(tf) dtf’ o n (o> . €Ccor dx(tf) =

STEP (g). Using

x(t,) x(t,) dx(t,)
=1y + | dv ,
te lnew |t |aa | di

repeat Steps (a) through (g) until x(t)zx",tp[x(tf),tf]=0, and

0

Q[x(tf),u(tf),v,tf] = 0 to the desired accuracy.

First-order gradient algorithms

Introduction

Qradient methods were developed to surmount the “initial guess”
difficulty associated with direct integration methods (see Introduction
Qf Section 7.3). They are characterized by iterative algorithms for
improving estimates of the control histories, u(t), so as to come closer
to satisfying the optimality conditions and the boundary conditions.

+The reason for this is that there is less chance of difference in growth in the elements
of S(¢) than in X(¢) and A(t), used in the transition matrix algorithm.

